
18/9/2007 I2A 98 slides 11 1 Richard Bornat
Dept of Computer Science

Finding our way round maps, mazes, mathematical
graphs.

Earlier slides dealt with (rooted directed ordered)
trees, which are a special case of a graph.

Some maps are a depiction of a number of places,
together with the roads/paths/railways connecting
them. For example:

LondonBristol

Plymouth

Birmingham

Oxford

York

Manchester

Dublin

Such a map is an example of a mathematical graph.
There are lots of famous computing/mathematical
problems to do with graphs, and lots of interesting
algorithms.

18/9/2007 I2A 98 slides 11 2 Richard Bornat
Dept of Computer Science

A ‘connected’ graph is one in which all nodes are
reachable from all others. Not all graphs are
connected – for example, you can’t get from London
to Dublin using the connections shown on the map
above.

People are very good at reading maps. When they
can’t see the whole map, people aren’t so good at
finding their way. So to illustrate that graph-searching
is a problem you can put a person down in a maze (a
kind of graph) where they can’t see the whole maze.

“You are in a debris room filled with stuff washed in from the
surface. A low wide passage with cobbles becomes plugged with
mud and debris here, but an awkward canyon leads upward and
west. A note on the wall says ‘magic word xyzzy’”

18/9/2007 I2A 98 slides 11 3 Richard Bornat
Dept of Computer Science

To make the problem easier I’m going to restrict
myself to directed graphs in which each edge
(connection) goes from one node (place) to another –
like a one-way street.

We haven’t lost any generality: we can imitate undirected
edges with a pair of directed edges, one out and one back.

I’m going to solve a sequence of problems:

• find all nodes in a graph which are reachable
from A;

• find a path from A to B, if there is one;

• find the shortest path from A to B.

I shall have variations on each of these problems.

18/9/2007 I2A 98 slides 11 4 Richard Bornat
Dept of Computer Science

Node B is reachable from A if A B= or if there is a
path from A to B.

A path is a sequence N E N E E Nn n0 0 1 1 2 1, , , ,..., ,! ! of
nodes interspersed with edges, such that Ei is an edge
which connects Ni and Ni+1.

A

B

e

ff

A path as a sequence of nodes won’t do: given
<A,B> and this graph we don’t know if the path
follows edge e or edge f.

A path as a sequence of edges won’t do: given
this graph the sequence <e,f> might be a path A
to B to A or a path B to A to B.

The path A e B e A, , , , is in railway terms, a
return journey.

When working with trees, a sequence of nodes will
do, because there is a unique sequence of edges
which connects them.

When working with directed graphs, a sequence of
edges will do, because the nodes can be deduced.

18/9/2007 I2A 98 slides 11 5 Richard Bornat
Dept of Computer Science

The shortest (sequence of edges) path is ,

it leads ‘from’ any node ‘to’ that same node, without using
any edges

the next simplest is a single edge, the next two edges,
and so on.

One interesting path is a cycle: a non-empty path
from A to A which doesn’t use any edge or node more
than once (except that A must occur at the beginning
and end of the path).

In the map above there is a cycle London - Oxford -
Birmingham - London – and vice-versa – , but London -
Oxford - London is not a cycle, and neither is the empty path
from London to London.

London - Oxford - Birmingham - York - Manchester -
Birmingham - London isn’t a cycle because it goes through
Birmingham twice. But it can be split into two cycles.

18/9/2007 I2A 98 slides 11 6 Richard Bornat
Dept of Computer Science

A form of graph which we have seen already is the
tree.

An undirected tree is a connected graph in which
there are no cycles

alternatively: a connected graph with N nodes and N!1 edges,
or a graph with no cycles, N nodes and N!1 edges.

This is an undirected tree:

this isn’t:

18/9/2007 I2A 98 slides 11 7 Richard Bornat
Dept of Computer Science

and neither is this:

In rooted directed trees we require additionally:

• one special node (the root);

• that each node, apart from the root, has exactly
one edge pointing to it; the root has no edges
pointing to it.

An alternative definition is more economical, but less
illuminating: a rooted directed tree is a connected directed
graph with N nodes and N!1 edges, in which each node apart
from the root has exactly one edge leading to it; the root has
no edge leading to it.

18/9/2007 I2A 98 slides 11 8 Richard Bornat
Dept of Computer Science

This is a rooted directed tree:

and this isn’t (even though it has no cycles) – it’s a
rooted directed acyclic graph or rooted DAG:

and this is a DAG with no cycles and no multiple
paths, but without a root:

18/9/2007 I2A 98 slides 11 9 Richard Bornat
Dept of Computer Science

Java classes for directed graphs.
class Node {
 public String name; public Edge[] edges;
 ...
}

class Edge {
 public String name; public Node to;
 ...
}

- a node has a name and a collection of edges which
lead from it, an edge has a name and goes to a node.

Since our edges are directed, and since we access them via the
node from which they lead, the Edge class doesn’t have a
‘from’ field. Our edges have names, just as roads (M4) and
railways (East Coast) have names.

18/9/2007 I2A 98 slides 11 10 Richard Bornat
Dept of Computer Science

The Node instance method call printchildren() will
print out the names of all the nodes reachable from a
particular node, provided that the graph has no cycles:
public void printchildren() {
 System.out.println(name);
 for (int i=0; i<edges.length; i++)
 edges[i].to.printchildren();
}

1. When r has no edges leading from it (edges.length==0)
r.printchildren() prints the name of r, and doesn’t do anything
else.

2. When r does have edges leading from it r.printchildren() prints
the name of r and then deals with each of the nodes reachable
from r in a sequence of recursive calls. If each of those recursive
calls prints all the names in its subgraph then r.printchildren()
prints all the names in the graph reachable from r.

3. So provided that the graph reachable from r.edges[i].to is in
every case a smaller graph than the graph reachable from r – has
fewer nodes – then r.printchildren() is a valid recursive
algorithm which prints the name of every node in the graph
reachable from r.

If the graph has cycles, then the argument breaks
down in the last step: if there’s an edge from r to t to
u to ... to r then it isn’t true that the graph reachable
from t is smaller than the graph reachable from r.

18/9/2007 I2A 98 slides 11 11 Richard Bornat
Dept of Computer Science

r.printchildren() will print the name of each node
in the graph reachable from r exactly once, if that
graph happens to be a tree.

1. When r has no edges leading from it (edges.length==0)
r.printchildren() prints the name of r exactly once, and doesn’t
do anything else.

2. When r does have edges leading from it r.printchildren() prints
the name of r and then deals with each of the nodes reachable
from r in a sequence of recursive calls. If each of those recursive
calls prints all the names in its subtree exactly once and those
subtrees are disjoint,then r.printchildren() prints all the names
in the graph reachable from r exactly once.

3. So provided that the graph reachable from r.edges[i].to is in
every case a smaller graph than the graph rooted at r – has fewer
nodes – and those graphs are disjoint, then r.printchildren() is
a valid recursive algorithm which prints the name of every node in
the graph reachable from r exactly once.

If the graph is a DAG – that is, if there is more than
one path from r to any node – then the argument
breaks down in the second step.

but part of the condition that a graph is a tree is that there is
only one path from r to t.

18/9/2007 I2A 98 slides 11 12 Richard Bornat
Dept of Computer Science

Printchildren visits every node in the graph by
traversing every edge. Actually it tries to traverse
every path.

Printchildren does a certain amount of work at each
node – O N() – and also a certain amount of work
with each edge – O E() – so overall it is O N E+() in
time.

Each method call uses O 1() space, and the number of
methods is proportional to the maximum path length:
in the worst case it uses O E() space.

18/9/2007 I2A 98 slides 11 13 Richard Bornat
Dept of Computer Science

To print out all the nodes of a graph, each node once
only, printchildren requires that the graph form a tree.

What happens if the graph is not a tree? What does
printchildren do then?

If the graph has no cycles, but is not a tree,
printchildren will print some node name (or many
node names) more than once.

If it has a cycle, then both inductive arguments fail.

Starting from a in this graph, which is not a tree but is
a DAG:

a

b c

d

e f

h

printchildren will visit the nodes in something like
this order: a; b; d; e; f; c; d; e; f; h.

18/9/2007 I2A 98 slides 11 14 Richard Bornat
Dept of Computer Science

Starting from a in this graph, which is neither a tree
nor a DAG, printchildren will loop a; b; d; e; f; c; h;
a; b; d; e; f;:

a

b c

d

e f

h

18/9/2007 I2A 98 slides 11 15 Richard Bornat
Dept of Computer Science

Traversing a (possibly cyclic) graph.

How do we visit all the nodes of a graph – which may
have cycles and/or multiple paths between nodes – in
such a way that we visit each node exactly once (i.e.
without looping)?

I shall write a procedure which prints the name of
each node exactly once: ‘visiting’ will be the action
of printing the name.

I give my graph-traversing method a Vector argument
describing all the nodes that have already been
visited.

r.printreachable(v) will print the names of all the
nodes in the graph reachable from r except for those
listed in v, so r.printreachable(new Vector()) will
print all the reachable nodes:
public void printreachable(Vector visited) {
 if (!visited.contains(this)) { // has this node been printed?
 visited.addElement(this); // don’t print it again
 System.out.println(name);
 for (int i=0; i<edges.length; i++)
 edges[i].to.printreachable(visited);
}

18/9/2007 I2A 98 slides 11 16 Richard Bornat
Dept of Computer Science

I don’t give an inductive proof of my claim that this
procedure does what it is supposed to do. I invite you
to try to make one of your own.

You might think it would be OK to add
visited.removeElement(this) when the for ends and all the
children nodes have been visited. But look at the DAG, and
notice that in that case we would visit the d,e,f subtree twice!

r.printreachable(new Vector()) (invisibly)
generates a spanning tree covering the nodes
reachable from r: no edge is accepted which leads
into r, and only one entering edge is accepted for all
other reachable nodes.

Printreachable is not as fast as printchildren: the test
!visited.contains(this) is probably O N(), and it’s
executed once for each edge in the graph, so the
overall time will be O NE() at least.

Printreachable needs O N() space for the visited
vector and worst case O E() space for the method
calls, so it’s O N E+() in space.

18/9/2007 I2A 98 slides 11 17 Richard Bornat
Dept of Computer Science

Is there a path from A to B?

I extend the technique used in printreachable:
r.pathq(v, s) finds if there is a path from r to s
which doesn’t pass through the nodes listed in v. So
r.pathq(new Vector(), s) finds if there is a path
between r and s:
boolean pathq(Vector visited, Node s) {
 if (this==s) return true; // empty path exists
 else
 if (!visited.contains(this)) { // not a cycle
 visited.addElement(this);
 for (int i=0; i<edges.length; i++)
 if (edges[i].to.pathq(visited, s)) return true;
 return false;
 }
}

This procedure begins as if it would visit all the nodes
in the graph, but stops as soon as a path to s is found.

As with printreachable, pathq takes O NE() time and
uses O N E+() space.

18/9/2007 I2A 98 slides 11 18 Richard Bornat
Dept of Computer Science

Calculate a path from A to B.

This method delivers a path – a vector of edges –
which lead from r to s, if one exists. If no path exists
it returns a null reference.

Note the distinction between a null reference – no vector,
signalling no path – and an empty vector – signalling an
emtpy path.

public Vector pathfind(Vector visited, Node s) {
 if (this==s) return new Vector(); // the empty path
 else
 if (!visited.contains(this)) {
 visited.addElement(this);
 for (int i=0; i<edges.length; i++) {
 Vector v = edges[i].to.pathfind(visited, s);
 if (v!=null) {
 v.insertElementAt(edges[i],0); return v;
 }
 }
 return null; // no path this way
 }
}

notice how the path to the goal is built up step-by-step once
the goal has been found.

If there is a path, then pathfind will find a path in
worst-case O NE() time, using O N E+() space. But
not necessarily the shortest path. Oh no!

18/9/2007 I2A 98 slides 11 19 Richard Bornat
Dept of Computer Science

An aside: more efficient visiting.

Printchildren takes O N E+() time and uses O E()
space (provided the graph is in fact a tree).
Printreachable, pathq and pathfind as defined above
take O NE() time and use O N E+() space.

We might use a binary balanced tree, instead of a
vector, and reduce the time to O E Nlg(); we might
reduce it to something like O N E+() by using a hash
table.

But in fact there is a much simpler solution: record
visits in the Node data-structure itself! The cost is an
additional cleanup method call to remove the marks
inserted by a traversal of the tree.
class Node {
 private String name; private Edge[] edges;
 private boolean visited;
 public void printreachable() ...
 public boolean pathq(Node s) ...
 public Vector pathfind(Node s) ...
 public void cleanup() ...
 ...
}

18/9/2007 I2A 98 slides 11 20 Richard Bornat
Dept of Computer Science

Here is the fast (O N E+()) version of printreachable.
Note that it tests the visited variable where previously
a vector was searched, and sets the visited variable
where previously an element was added to a vector:
public void printreachable() { // fast version
 if (!visited) {
 visited = true;
 System.out.println(name);
 for (int i=0; i<edges.length; i++)
 edges[i].to.printreachable();
 }
}

But once all the nodes have been visited, and marked
as visited, we need a way of cleaning off the marks:
public void cleanup() {
 if (visited) {
 visited = false;
 for (int i=0; i<edges.length; i++)
 edges[i].to.cleanup();
 }
}

What the fast version of printreachable does is to
print all the nodes reachable from r except those
which are only reachable through a node whose
visited field is set to true.

It follows that printreachable won’t print the entire graph if
there are any visited fields already set to true.

18/9/2007 I2A 98 slides 11 21 Richard Bornat
Dept of Computer Science

The additional cost of cleanup is small – O N E+() in
time and worst-case O N E+() in space. In return we
get a fast, simple graph-traversal/search mechanism.
boolean pathq(Node s) { // fast version
 if (this==s) return true; // empty path exists
 else
 if (!visited) { // not a cycle
 visited = true;
 for (int i=0; i<edges.length; i++)
 if (edges[i].to.pathq(s)) return true;
 return false;
 }
}

Vector pathfind(Node s) { // fast version
 if (this==s) return new Vector(); // the empty path
 else
 if (!visited) { // not a cycle
 visited = true;
 for (int i=0; i<edges.length; i++) {
 Vector v = edges[i].to.pathfind(s);
 if (v!=null) {
 v.insertElementAt(edges[i],0); return v;
 }
 }
 return null; // no path this way
 }
}

18/9/2007 I2A 98 slides 11 22 Richard Bornat
Dept of Computer Science

Finding the shortest path: queues rather
than stacks.

a

b c

d

e f

h

1 2

3 4
5

6 7

Consider the DAG above, and consider the problem
of finding a path from a to h in that graph.

The findpath procedure extends its search – through
the spanning tree – in a ‘stack-like’ way. Starting
from a it has to consider edges 1 and 2; it considers
edge 1 first, leaving 2 for later. Edge 1 leads to b;
edge 3 leads from b to d; that in turn leads it to
consider edges 6 and 7 to e and f. Only when all those
searches have failed does it consider edge 2, which is
part of the answer.

18/9/2007 I2A 98 slides 11 23 Richard Bornat
Dept of Computer Science

This is called depth-first search; it extends the
spanning tree by taking the deepest so-far
unexpanded node and expanding it.

Another way of looking at it is that it keeps a ‘stack’
of nodes (or edges - it makes no difference) and it
extends the search by taking (popping) the node from
the top of the stack and replacing it with (pushing) the
nodes which are accessible from that node:

<a> // starting position
<b,c> // expand a using edges 1 & 2
<d,c> // expand b, using edge 3
<e,f,c> // expand d, using edges 6 & 7
<f,c> // node e has no children
<c> // neither does f
<d,h> // node d is the left-most child of c
<h> // but we’ve already visited d, so we don’t expand it
<> // bingo! node h is our goal.

The node on the front of the list is always the
unexpanded node which is farthest from the starting
point.

18/9/2007 I2A 98 slides 11 24 Richard Bornat
Dept of Computer Science

We can consider this an inefficient search: it searches
regions far away from the starting point even though
the destination may be close. In the example above it
looks at all the rest of the graph before it gets round
to h.

If the graph leading from node d was very large, it
would be a long time before the algorithm looked at
node c and thus found h.

Too often ‘depth-first’ (stack-wise) search
wanders off into the distance in the wrong

direction.

We can do better.

18/9/2007 I2A 98 slides 11 25 Richard Bornat
Dept of Computer Science

Suppose we extend the search queue-wise: when we
reach an unexplored node, we add its edges not to the
front of the list of things to look at, but to the back.

The nodes at the back of the queue will now be the ones
farthest from the starting point; by expanding the node at the
front of the queue we will be exploring the region of the graph
nearest to the starting point.

We will construct our search ‘breadth-first’, and –
almost by accident! – the first time we come across
the goal we will necessarily have reached it by a
shortest path.

a shortest path, not necessarily the shortest path.

I’m measuring length of path by number of edges, but I shall
refine that later.

18/9/2007 I2A 98 slides 11 26 Richard Bornat
Dept of Computer Science

Here’s a breadth-first search, using the same DAG
and the same problem as before:

<a> // starting position
<b,c> // expand a using edges 1 & 2
<c,d> // expand b, using edge 3
<d,d,h> // expand c, using edges 4 & 5
<d,h,e,f> // expand d, using edges 6 & 7
<h,e,f> // we’ve already expanded d (it’s been painted)
<e,f> // bingo! node h is our goal.

Even in this very small example, there are many
fewer steps in this expansion; far-away parts of the
graph are simply not examined.

18/9/2007 I2A 98 slides 11 27 Richard Bornat
Dept of Computer Science

I can use a vector as a primitive kind of queue. Given
that, here’s a breadth-first version of pathq:
public boolean breadthfirstpathq(Node s) {
 Vector q = new Vector();
 q.addElement(this);
 while (q.size()!=0) { // as long as there is a queue ...
 Node r = (Node)q.elementAt(0);
 q.removeElementAt(0);
 if (r==s) return true; // there is a path!
 else
 if (!r.visited) { // not already dealt with
 r.visited=true;
 for (int i=0; i<r.edges.length; i++)
 q.addElement(r.edges[i].to);
 }
 }
 return false; // search failed, no path
}

Unfortunately the work done at each node will be
dominated by q.removeElementAt(0) – almost
certainly worst-case O N(). So it is worth looking at a
faster implementation of a queue.

18/9/2007 I2A 98 slides 11 28 Richard Bornat
Dept of Computer Science

Aside: qeues are easier than you might think.

A queue is a data structure which supports insertion at
the back and removal at the front. By contrast, a list
(stack) provides insertion and removal at the front.

One easy way to build a queue is to use an array Q
and a couple of variables h and t: the first element in
the queue is Q h[], and the last element is Q t ![]1 .

When t gets too big we can wrap around to the
beginning ... we can make more space if the queue
gets full ... (see Weiss pp 416-421).

18/9/2007 I2A 98 slides 11 29 Richard Bornat
Dept of Computer Science

class Queue { // array version
 private Object[] Q; private int h, t, count;
 private final int inc = 10; // smallest queue
 public Queue() { Q = new Object(inc); h=0; t=0; count=0; }

 public boolean isempty() { return count==0; }

 public void insert(Object o) {
 if (count==Q.length) { // stretch the queue
 Object[] R = new Object(Q.length+inc);
 for (int i=0, c=count; i<c; i++) R[i]=remove();
 count=c; h=0; t=count; Q=R;
 }
 Q[t]=o; t=(t+1)%Q.length; count++;
 }

 public Object remove() { // assume queue is not empty
 Object o = Q[h];
 h=(h+1)%Q.length; count--; return o;
 }
}

Remove is constant time. Insert sometimes stretches
the queue-holding array, but if the array is made large
enough to start with, it’s constant time.

18/9/2007 I2A 98 slides 11 30 Richard Bornat
Dept of Computer Science

Another way to build a queue is to make a list which
eats its head!

Use a null pointer as the value describing an empty
queue.

For a non-empty queue make a list as usual, but make
the last element of the list contain not a null reference
but a reference to the first element in the list (that is,
make a circle).

Then keep a note of the last element in the queue.
From the pointer in the last element you can find the
first element!

It needs a bit of care when you insert into an empty queue, and
when you remove the last element in a queue (thus making the
queue empty).

18/9/2007 I2A 98 slides 11 31 Richard Bornat
Dept of Computer Science

class Queue { // of Objects
 private static class Qnode {
 public Object entry; public Qnode next;
 public Qnode(Object o) { entry=o; }
 }
 private Qnode q; // initialised to null automatically

 public boolean isempty() { return q==null; }

 public void insert(Object o) {
 Qnode last = new Qnode(o);
 if (q==null) // insert into empty queue
 last.next=last; // first and last!
 else { last.next=q.next; q.next=last; }
 q=last;
 }

 public Object remove() {
 Qnode first = q.next; // exception if q==null
 Object o = first.entry;
 if (first==q) q=null; // now queue is empty
 else q.next=first.next; // delete first
 }
}

Remove is constant time, but insert uses new, and that
causes garbage collection, and that’s unpredictable.

End of aside on queues.

18/9/2007 I2A 98 slides 11 32 Richard Bornat
Dept of Computer Science

So we have a procedure which will find if there is a
path from r to s without spending time rooting round
the far edges of the graph.
public boolean breadthfirstpathq(Node s) {
 Queue q = new Queue();
 q.insert(this);
 while (!q.isempty()) { // as long as there is a queue ...
 Node r = (Node)q.remove();
 if (r==s) return true; // there is a path!
 else
 if (!r.visited) { // not already dealt with
 r.visited=true;
 for (int i=0; i<r.edges.length; i++)
 q.insert(r.edges[i].to);
 }
 }
 return false; // search failed, no path
}

An analogy which may help: think of the graph as a
collections of points in 3-D space; then breadthfirstpathq
expands a sphere around r until the sphere includes s.

18/9/2007 I2A 98 slides 11 33 Richard Bornat
Dept of Computer Science

In order to be able to find the path that leads from r to
s, I need to queue more information: not only a node,
but also the path to it.
private class PathInfo {
 public Node r; public Vector path;
}

public void enqueue(Queue q, Node r, Vector path) {
 PathInfo pi = new PathInfo();
 pi.r=r; pi.path=path; q.insert(pi);
}

public Vector breadthfirstpathfind(Node s) {
 Queue q = new Queue;
 enqueue(q,this,new Vector());
 while (!q.isempty()) {
 PathInfo pi=(PathInfo)q.remove();
 Node r = pi.r; Vector path = pi.path;
 if (r==s) return path;
 else
 if (!r.visited) {
 r.visited=true;
 for (int i=0; i<r.edges.length; i++) {
 Vector path2 = path.clone();
 path2.addElement(r.edges[i]);
 enqueue(q,r.edges[i].to,path2);
 }
 }
 }
 return null;
}

This will find a shortest path in a directed graph,
whether or not the graph has cycles, whether or not
there is more than one path between some nodes.

18/9/2007 I2A 98 slides 11 34 Richard Bornat
Dept of Computer Science

This method is hugely inefficient, because it clones a
vector each time it traverses an edge: O NE(), even if
the queue operations are constant-time.

If we use lists we can share information between all
the descendants of a node:
class EdgeList { public Edge hd; public EdgeList tl; }

private class PathInfo {
 public Node r; public EdgeList path;
}

public void enqueue(Queue q, Node r, EdgeList path) {
 PathInfo pi = new PathInfo();
 pi.r=r; pi.path=path; q.insert(pi);
}

public EdgeList breadthfirstpathfind(Node s) {
 Queue q = new Queue;
 enqueue(q,this,null);
 while (!q.isempty()) {
 PathInfo pi=(PathInfo)q.remove();
 Node r = pi.r; EdgeList path = pi.path;
 if (r==s) return path;
 else
 if (!r.visited) {
 r.visited=true;
 for (int i=0; i<r.edges.length; i++) {
 Edgelist path2 = new EdgeList();
 path2.hd = r.edges[i]; path2.tl = path;
 enqueue(q,r.edges[i].to,path2);
 }
 }
 }
 return null;
}

18/9/2007 I2A 98 slides 11 35 Richard Bornat
Dept of Computer Science

This method builds paths in reverse order (the
element at the hd of the path is always the last edge in
the path). The result can be reversed if required.

If new were a constant-time operation, this method
would be O N E+() in time, O NE() in space (because
it constructs worst-case one path per node, each
worst-case of length proportional to E).

We could make it adhere to these bounds more
precisely by using arrays and not queues or lists. But
that is another topic, and won’t be covered in this
course.

18/9/2007 I2A 98 slides 11 36 Richard Bornat
Dept of Computer Science

In practice, on maps and in lots of other sorts of
graphs, edges have weight: a value which says how
long, or wide, or important, or desirable, that edge is.

In looking for shortest paths I’m going to interpret the
weight of an edge as the ‘length’ of the edge, and the
length of a path will therefore be the sum of the
weights of its edges.

I shall presume that the weight is an integer, and I
shall assume that it is never negative.
class Edge {
 public String name; public Node to; public int weight;
};

In order to find the shortest path, I shall need to keep
the queue of nodes in path-distance order. That
requires a structure called a priority queue.
interface PriorityQueue {
 public boolean isempty();
 public Object insert(Object o, int priority);
 public Object remove();
}

We shall deal with priority queues in a later set of
slides.

18/9/2007 I2A 98 slides 11 37 Richard Bornat
Dept of Computer Science

If I keep the queue in distance order (least distance at
the front of the queue), the first node in the queue will
always be the one closest to the origin.

It may be the case that an entry farther back in the list
is superseded as a result of expanding the node at the
head of the list. For example, consider:

a

c

d

100

20

40

The route a-d has length 100; the route a-c-d has
length 60. Here is how the search might go:

<(a,0,[])> // starting position
<(c,20,[a-c]),(d,100,[a-d])> // expand a
<(d,60[c-d,a-c]),(d,100[a-d])> // expand c

At this point we have two entries for d. The first is the one we
want, and our visited mechanism will ensure that we ignore
the second one if we reach it.

18/9/2007 I2A 98 slides 11 38 Richard Bornat
Dept of Computer Science

The Dijkstra algorithm.

The pathfinding procedure is exactly the same
mechanism as before, with the exception that now I
queue distances as well:
class EdgeList { public Edge hd; public EdgeList tl; }

private class PathInfo {
 public Node r; public EdgeList path; public int len;
}

public void enqueue(PriorityQueue q, Node r, EdgeList path,
 int len) {
 PathInfo pi = new PathInfo();
 pi.r=r; pi.path=path; pi.len=len; q.insert(pi,len);
}

public EdgeList Dijkstrafind(Node s) {
 Queue q = new Queue;
 enqueue(q,this,null,0);
 while (!q.isempty()) {
 PathInfo pi=(PathInfo)q.remove();
 Node r = pi.r; EdgeList path = pi.path; int len=pi.len;
 if (r==s) return path;
 else
 if (!r.visited) {
 r.visited=true;
 for (int i=0; i<r.edges.length; i++) {
 Edgelist path2 = new EdgeList();
 path2.hd = r.edges[i]; path2.tl = path;
 enqueue(q,r.edges[i].to,path2,len+r.edges[i].weight);
 }
 }
 }
 return null;
}

18/9/2007 I2A 98 slides 11 39 Richard Bornat
Dept of Computer Science

This is the “Dijkstra algorithm” for finding shortest
paths in a graph.

It is important that in the while loop we don’t look to
see if an edge leads to the goal. Success only comes
when the goal reaches the front of the queue.

That’s almost all there is to say about finding shortest
paths, but there is one final twist. We can do better if
we sniff the air to guess which way to go!

18/9/2007 I2A 98 slides 11 40 Richard Bornat
Dept of Computer Science

The A* algorithm.

Given an estimate of how far it is from where we are
to where we are going, we can expand the nodes that
seem to be nearer to the goal.

The technique is almost the same as the Dijkstra
algorithm, but we keep the queue in ‘estimated first to
finish’ order; that means we look at the best-seeming
nodes first.

The estimates must be optimistic – strictly, they must
not be pessimistic and they must not be negative.

notice: ‘must be optimistic’ is not the opposite of ‘must not be
pessimistic’.

If we are searching a 2-dimensional map, the estimate can be
‘Euclidean distance’, easting northing2 2+ .

If an estimate was pessimistic, then its entry might be
ignored for too long.

If a pessimistic estimate was longer than an actual
path to the goal, then the path labelled with that
estimate would be completely ignored; that might
mean that a shortest path could be missed.

18/9/2007 I2A 98 slides 11 41 Richard Bornat
Dept of Computer Science

This is the new PathInfo structure. Distance is the
length of path (which leads from the starting point to
node r); estimate is the estimated distance from r to
the destination. We shall keep the queue in
‘distance+estimate’ order:
class PathInfo {
 public Node r; public int distance, estimate;
 public Edgelist path;
}

public void enqueue(PriorityQueue q, Node r, EdgeList path,
 int dist, int est) {
 PathInfo pi = new PathInfo();
 pi.r=r; pi.path=path;
 pi.distance=dist; pi.estimate=est;
 q.insert(pi,dist+est);
}

When the goal (Node s) reaches the front of the
priority queue, its estimate must be exact (anything
else would be pessimistic or negative!), and no other
remaining path, however optimistically estimated, can
get there faster, so in that case we shall have found
the shortest path.

18/9/2007 I2A 98 slides 11 42 Richard Bornat
Dept of Computer Science

Now a complication: we expand the priority queue in
distance+estimate order, so we can’t be sure that
when we first visit a node, we have found the
shortest path to it. The visited boolean that has
served so far will no longer do the job.

I add an element to the Node structure to cope with
this: it records the shortest distance yet found to this
node.
class Node {
 public String name; public Edge[] edges;
 public boolean visited; public int distfromorigin;
};

When I look at a node I may find it expanded, but it
may have been expanded (due to over-optimism)
using a longer path from the source than the one I’m
exploring.

And then I have to expand it again; oh dear. The new
expansion will eventually win over the remains of the
old expansion, because the estimates will be the same
and the distances will be less.

Re-expansion means that it is hard to decide just what
the complexity of this algorithm is. Never mind.

18/9/2007 I2A 98 slides 11 43 Richard Bornat
Dept of Computer Science

public EdgeList Astarfind(node s) {
 Queue q = new Queue;
 enqueue(q,this,null,0,something);
 while (!q.isempty()) {
 PathInfo pi=(PathInfo)q.remove();
 Node r = pi.r; EdgeList path = pi.path;
 int dist=pi.dist; int est=pi.est
 if (r==s) return path;
 else
 if (!r.visited || r.distfromorigin>dist) {
 r.visited=true; r.distfromorigin=dist;
 for (int i=0; i<r.edges.length; i++) {
 Edgelist path2 = new EdgeList();
 path2.hd = r.edges[i]; path2.tl = path;
 enqueue(q,r.edges[i].to,path2,
 dist+r.edges[i].weight,estimate);
 }
 }
 }
 return null;
}

It is claimed that, despite the multiple expansions of some
nodes which might be caused by poor estimation, this
algorithm is faster in practice than the Dijkstra version.

I invite you to experiment.

18/9/2007 I2A 98 slides 11 44 Richard Bornat
Dept of Computer Science

For those of you who have come this far, a puzzle.

London Transport provide (or used to provide at
Waterloo) machines which tourists could use to find
their way round the Underground.

Londoners know lots of clever ways to use the
Underground. For example, I know that the fastest
way from Finsbury Park to Paddington is: Victoria
Line to Oxford Circus, over the little bridge, Bakerloo
to Paddington. And the fastest way from Finsbury
Park to Waterloo is Victoria Line to Oxford Circus,
cross the platform, Bakerloo to Waterloo.

But LT’s machine told me to go to Waterloo via
Euston and the Northern Line, and it told me to go to
Paddington via Euston Square and the Circle!!!

Can you write a search algorithm which takes
account of journey times, change times, frequency
of trains on different lines, reliability of lines, ...
and which would perform as well as you and I can
when planning routes through the Tube?

